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MONITORING PROCESS MEANS
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0. Abstract. Hotelling's T2 and related charts are studied in moni-

toring the means of a multidimensional production process. The T2 chart
is shown to be optimal in a class of procedures in that it signals more
quickly than other procedures in the class when the process is not in con-
trol. Nonstandard properties of the distributions of run lengths of these
charts are studied when (i) certain parameters are estimated in a base
period and modified procedures are followed using these estimates, (ii)
the process is a drifting process, and (iii) the assumption of independent
Gaussian vector observations is replaced by the assumption that observa-
tions are generated from a spherical process. For these cases stochastic
bounds on the actual run-length distributions are given in terms of geo-
metric distributions, and certain monotone properties of run lengths are

established under drifting.
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1. Introduction. Various control charts are available for monitoring
the output of a production process. Shewhart's (1926) X chart is standard
for monitoring the mean level of a single quality characteristic, and
Hotelling's (1947) XZ and T2 charts are used for monitoring the means of
several characteristics. In these charts successive values of a statistic
are plotted against time, and a chart signals at level o that the process
is not in control when the statistic exceeds a control limit Cye Standard
assumptions are that independent random samples of n observations each are
taken in succession from a p-dimenczional Gaussian process having the mean
vector p and the dispersion matrix §, and Hq is the value of U when the

-

process is in control. For the X2 chart the statistics are

2 = aml = -
X, = a@mu) T (mpg), 1= 1,2, (1.1)

where ? is the vector of means from the ith sample, and the control limit
is ¢y = xz(p), the 100(l-a) percentile of the central chi-squared distri-

bution having p degrees of freedom. For the TZ chart the statistics are

2 s~lg .
Ty = a@mug) ST (Fmugs 1= 1,2, (1.2)

where ?i is the sample dispersion matrix for use when § is unknown and
n > p, and the control limit is c, = Ti(p,n—l), the 100(l-a) percentile of
Hotelling's (1931) distribution having the parameters p and n~l. These
procedures were developed further and applied by Jackszon (1956,1959),
Jackson and Morris (1957), Jackson and Bradley (196la,b), Ghare and Torg-
ersen (1968), and Jackson and Mudholkar (1979), including diagmostic pro-

cedures for assigning probable causes when a chart signals that the moni-

tored process is not in control.
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Our purpose here is to study the XZ and '1‘2 charts and some modifica-
tions of these under standard and nonstandard assumptions. To be effect-
ive a chart should signal infrequently when the process is in control and
more frequently as the process shifts from control. These properties are
embodied in the distribution of the rum length of a chart, i.e. the number

of successive samples taken before the chart signals that the process is

not in control. Run-length distributions are useful in comparing monitor-
ing procedures, and their moments enter naturally into cost models for
designing economic inspection policies. In Shewhart charts successive
statistics typically are independent; if in addition the process is sta-

tionary, then the distribution of run lengths is geometric with parameter

equal to the probability of exceeding the control limit on any sampling
occasion. Under standard assumptions the run lengths of the X2 and T2
charts are geometric, assuring that these charts eventually will signal
with unit probability. Following the supporting materials of Section 2,
we develop further properties of the standard T2 charts in Section 3 in-
cluding optimal properties.

Limitations are inherent in the standard X2 and T2 charts, and these
inhibit use of the charts. Process dispersion parameters frequently are

unknown for use in the X2 charts, and the control value u _, may be unknown

0

for use in either chart. Moreover, the T2 chart requires that n > p in

each sample to ensure the invertibility of §i’ whereas in practice small

but frequent samples routinely are taken. In the case of a single char-
acteristic a common practice is to estimate such parameters in a base
period of sufficient length to give reliable estimates, and to use these

estimates in lieu of the unknown parameters. In the case of several




characteristics this leads to modified X2 and T2 charts as studied in Sec-
tion 4. One consequence is that run lengths of these charts are not geo-
metric owing to dependencies among the successive statistics.

Nonstandard properties of the Xz and T2 charts are examined further in
Sections 5 and 6. Section 5 deals with drifting processes; their run lengths
are not geometric because successive statistics are not distributed identi-
cally. Nonetheless, a basic monotonicity property of the run lengths is
established and used to bound the actual run-length distributions in terms |
of geometric distributions. In Section 6 the Gaussian assumption is weak- |

ened to the case that observations are generated from a spherical process,

and these charts are studied under the weakened assumptions.

2. Preliminaries. Let V be a finite-dimensional linear space; ex-
amples are the n-dimensional Euclidean space R™ and the space anm of real
(nxm) matrices. Of two random variables U and V, U is said to be stochas-

tically larger than V if, for every t, P(U>t) > P(V>t). This in turn

implies that E(U) > E(V) whenever the expected values are defined. Let

{G(t3a); a e (0,1)} be cumulative distribution functions (cdf's) of geo-
L metric distributions having argument t and parameter a; then the family
{G(t3a); a e (0,1)} is stochastically decreasing in «. If u(+) and v(-)
are two probability measures on RN, u() is said to be more peaked about
9 ¢ RN than v(*) in the sense of Sherman (1955) if, for every compact con-
vex set E < RN symmetric about § under reflection, uw(E) > v(E).

A basic inequality is the following; a standard proof uses convexity

and Jensen's inequality.

LEMMA 1. Let {XO’XI""’Xt} be mutually independent random elements




with values in VO><Vt such that {xl,x

2""’Xt} are distributed indentically.

For any function ¢: VO x V>R and any constant c,

t
Po(X,Xp) <, 00 0(X XD <e) > TP [8(X,,X ) <el.

The available quality control procedures for variables are based al-
most exclusively on Gaussian assumptions. To study the effects of depart-
ures from normality we consider distributions having the weaker property

of spherical symmetry, including such heavy-tailed distributions as the J

1 spherical Cauchy law and other spherical stable distributions. If Y ¢ RN

~

is a random element having the distribution L[(Y), then L(Y) is said to be

spherically symmetric if, for any (NxN) orthogonal matrix Q, L(QY) = L(g).
Properties of these and related distributions were considered by Kelker
(1970). Let SN(§’§N> be the class of N-dimensional spherical distributions
symmetric about § ¢ RN, i.e. if L(?) € SN(Q,EN), then L(g-g) is spherical.

If M is a linear subspace of RN, a function ¢: RN - Rk is said to be loca-

tion-invariant with respect to M if, for every £ ¢ M and y ¢ RN, o (y+g) =
¢(g). An important invariance property of distributions derived from

SN(Q,}N) is the following; a proof is given in Jensen and Good (1981).

LEMMA 2. Let L(g) be spherically symmetric about § ¢ M, and let $: RN >

——

Rk be location-invariant with respect to M and be homogeneous of degree

zero. Then the distribution L(¢(¥)) on Rk is invariant for all distribu-

tions L(Y) in the class {Sv(e,gv); 9 Y.

Let N be countable and let {g(t); t € N} be a stochastic process with
values in RP such that, for each k and {tl’t°""’tk} ¢ N, the joint dis- ;

tribution of {U(tl),...,q(tk)} considered as a distribution om Rpk is ’

| “,_____‘d, - : |




spherical; then {U(t); t ¢ N} is called a spherical process. A count~

able process is spherical if and only if it is a scale mixture of spherical

Gaussian processes, i.e. if for each k and {tl,t .,tk} e N, the joint

g3
probability density function (pdf) of U= [U(tl),...,U(tk)] of order (pxk)

is given by
£ = (20 P2 ey (e yry/2r?)an(o) (2.1)

with H(+) a mixing distribution on (0,=); cf. Hartman and Wintner (1940).
Various choices for H(+) yield different spherical processes, including
the spherical Gaussian process.

In the context of TZ charts, we assume that successive vector obser-
vations are generated throughout the monitoring period from a spherical
process and thus are dependent except in the Gaussian case. In particular,
partition.N into disjoint subsets {NO’NL""} corresponding to successive
sampling periods with NO a base period of length m and succeeding periods
of length n. Let y(t) and §(t) be step functions on N, constant within
samples with possible jumps between samples, such that u(t) ¢ RP and
z(t) (pxp) is positive definite. Our model for generating observations

from a spherical process {U(t); t ¢ N} with values in RP 1s

b

ng =z (tj)g(tj) + E(tj); tj £ NO’ j=1,2,...m (2.2)
-5t . - )
¥y £ (tj)g(tj) + E(tj), £y € Nio 3= 1,200,135 (2.3)

where i = 1,2,... . In monitoring location parameters the usual assump-

tion is that scale parameters remain stationary, i.e. that £(t) = I for

every t ¢ N. We return to this point later.




3. Properties of T2 Charts. In this section we study Hotelling's
(1947) Tz charts under the standard validating assumptions. Specifically,
we establish the propensity of these charts to signal when a process is not
in control, using stochastic comparisons of run lengths.

Let Y, = [Y,.,Y.,,...,Y. ] be the vector values observed during the
~i ~i1’~i2 ~in

ith sampling period, and let T(gi) be the statistic to be charted using a
procedure for monitoring the means of the sampled process. In testing

H: y = o against A: u # T using a single sample, it is known that the T2
test (i) is invariant under nonsingular linear transformations of the data
and thus is free of the arbitrary coordinates used to represent the obser-
vations, and (ii) depends on gi only through ?; and §i’ and its power de-

3 pends on the parameters only through the noncentrality parameter \ =

n(E-Eo)'§-1(E"Eo)‘ Henceforth let 1, be the class of all procedures moni-

1
toring at level o using statistics {T(Yl)’T(YZ)""} having the property

(1), and let T, be the class of procedures monitoring at level a on each
occasion and having property (ii). In the case of a single sample these ;
classes provide a-level tests for H: B =¥ against A: p # By and it is
widely known that the Tz test is uniformly most powerful among tests in

the classes | and v, on a fixed sampling occasion (cf. Anderson (1958),

2

Section 5.5). The notions of level and power do not carry over to the

entire monitoring period, however, as control charts typically signal with
unit probability even when the process is in control. Nonetheless, we next
establish that the TZ chart is optimal among procedures in the classes T
and T, in the strong sense that its run length is stochastically smallest

at a fixed alternative yu # o The T2 chart thus tends to signal more

quickly than other procedures in these classes when the process is not in

‘ “__I_______________‘d‘ ‘ -
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control.

THEOREM 1. In monitoring the means of a p-dimensional Gaussian process,

suppose the process is stationary with means u # Yo and dispersion matrix
L. Of all invariant procedures monitoring at level au in the class T and
of all g-level monitoring procedures in the class Tos the run length of the

T2 chart is stochastically smallest.

Proof. By stationarity, the mutual independence of {T(gl),T(Xz),...} and

their identical distributions, it follows for all procedures in T and Ty

that their run lengths are geometric with parameter equal to the probability
. . . 2

of exceeding a control limit on any particular occasion. Because the T

test is optimal among u-level tests in T and To»

ceeding the respective control limit at a fixed u # 4o is at least as large

the probability of ex-

for T2 as for any other procedure in t, or t,. The proof is completed on

1 2
recalling that the family {G(t;B8); 8 ¢ (0,1)} of geometric distributions
decreases stochastically in 8, thus assuring that the run length of the T2

chart is stochastically minimal.

We turn next to modifications of the standard charts which might be
made in response to the practical difficulties of implementing those pro-

cedures.

4. Modified Charts. Both the standard X2 and Tz charts require that
the control value g be known, and in addition the X2 chart requires the
value of £. Often these parameters are unknown. In the one-dimensional
case it is common practice to estimate such parameters in a base period
when the process is in control, and to use these estimates in lieu of the

unknown parameters. Carried over to the multidimensional case, this approach




yields modifications to the standard charts as follows. Let gO = [¥01’¥02’

3 ...,YOm] € prm consist of sample observations in a base period of length

m yielding one or both the estimates, gO for g and S0 for . When I is

unknown it is assumed that m > p to ensure the invertibility of § The

0’
) modifications of the standard charts to be considered here are set forth in
Table 1, where the listed statistics are appropriate versions of (l.l) and

v (1.2) together with updated versions of their control limits. The latter

are chosen to assure that the modified charts will continue to monitor at

level o on each sampling occasion.

Note that the Type 2 and Type 3 modifications may be considered as
substitutes for both Xz and T2 in (1.1) and (1.2). Practical advantages of
the Type 2 chart over the standard T2 chart are (i) only one matrix inver-
sion is needed using the Type 2 modification, and (ii) sample sizes after
the base period need not exceed p. This of course assumes stationarity of
the process dispersion parameters, which may be checked periodically using
the procedures of Hotelling (1947) or of Montgomery and Wadsworth (1972).

Run~length distributions of these modified charts generally are in-
tractable; they are not geometric owing to dependencies among the success-
ive statistics charted. However, the main result of this section is that
all these distributions may be bounded below in terms of standard geometric
distributions. That the modified charts eventually do signal is shown in

the proof of the theorem.

THEOREM 2. Denote the typical modified statistic of Table 1 by T(Yi’YO)
and its upper control limit by ¢, suppose {gl,xz,...} are observations
from a stationary process; and let N be the run length of the modified

chart., Then for every positive integer ¢,




P(N>t) > 1 - G(t;B)

where 8 is the marginal probability B8 = P[T(Xi,go) > ca].
Proof. Let M be geometric with distribution G(t;B); fix t; and for this
value note that P(M>t) = (l-B)t. Similarly express P(N>t) in terms of the
finite-dimensional distribution of {T(ZI,XO),...,T(Xt,XO)}, and apply Lemma
1 to infer that

P(N>t) = PET(gl,XO)fpa,...,T(Yt,go)jpu] .1

> LPITCY, Y<e 1 = (1-8)" = POWe). '

The proof using these finite-dimensional results will be complete if it can
be shown that the modified charts eventually signal with unit probability.
To see this, use the expression given for P(N>t) and the conditional inde-
pendence of {T(gl,go),...,T(Yt,go)} given go‘to write

POPT) = [ {PIT(Y,Yp)<e |1 1}5dF(Y,) (4.2)

pxm

where F(¢) is the cdf of Yo and Y has the same distribution as gi for i =

1,2,...,t. Clearly the function
t
H(E,Y ) = {P[T(Y,Y )< [Yo1} (4.3)

satisfies H(t,go) <1 and H(t,Yo) + 0 as t » » for each fixed Y Moreover,

0
IF dF(gO) = 1. From the dominated convergence theorem it follows that
pxm

im P(N>t) = | im H(t,Y.)dF(Y.) = O. (4.4)
%*w prm %*w 0 0

This shows that the modified charts eventually signal with unit probability

and thus that the proof holds for every t > 0.

F— i*



10

We note that Theorem 2 holds under weakened assumptions. The role of
Gaussian assumptions in that theorem is to supply the control limit ca; the
theorem holds otherwise as long as {¥0’¥l’¥2”"} are mutually independent
and {T(¥1’¥0)’T(¥2’¥0)""} are identically distributed. 1In particular, sta-
tionarity is not required for the Type 4 modification as long as the non-
centrality parameters {Ai = [nm/(n+m)](gi-go)'§;1(Bi-go); i=1,2,...} are

held constant.

5. Drifting Processes. Thus far we have supposed that the monitored
process is stationary beyond a base period, whether or not it is in control.
Combined with independence, stationarity leads to charts whose run lengths
are geometric. This section develops properties of the X2 and T2 charts in
monitoring the means of nonstationary multidimensional processes which we
call drifting processes. The run lengths for drifting processes are not
geometric even under independence because the successive statistics are not
distributed identically. Such distributions are complicated further by their
dependence on a countable sequence of parameters., Fortunately, intractable
distributions of this type can be bounded by simpler distributions under
suitable conditions on the sequence of parameters.

Let § = (61,52,...) be a sequence of parameters for a drifting process;
let F(t;§) be the distribution of run lengths for the corresponding chart;
and let D be the set of all bounded sequences. Two sequences § and §* in
D are said to be ordered as § < §* whenever Gi 5_6? for all i. Under this

partial ordering an element §m € DO is said to be minimal for DO e D, and

5., € DO to be maximal for DO’ if §m <8 §_§M for every § ¢ DO' The family

*)

{F(t;8); & = D} of distributions is said to be stochastically decreasing

in § 1f, for any ¢ and §* in D, the ordering § < o* implies the stochastic
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ordering F(t;§*) > F(t;8) for every t. For drifting processes this prop-
erty captures the notion that a chart will signal more quickly as the pro-
cess drifts further from control:

An important property of a stochastically decreasing family of run-
length distributions is that an envelope of curves can be constructed for
certain members of the family in terms of simpler distributions. Given a

bounded sequence § = (51,62,...), let Sm = inf(51,6 ,.¢.) and SM = sup(dl,

2

62,...), and define §(m) = (Gm,6m,...) and §(M) = (& .). A basic

w iy
result is the following.

LEMMA 3. Suppose the family {F(t;$8); 6§ & D} of run-length distributions is

stochastically decreasing in §. Then for any § ¢ D, the inequalities
F(e38(M) > F(e38) > F(t;8(m))

hold for every t > 0. Moreover, these bounds hold for every F(t;§*) such
that §(m) < &* < (™).

Proof. The first conclusion is a consequence of the transparent ordering
§(m) < § < &(M) and the fact that the family {F(t;$); § € D} is stochasti-
cally decreasing in §. The second conclusion follows on repeating these

arguments for any ¢* in §(m) < §* < §(M).

It may be noted that F(t;$) depends on the path § = (61,62,...) of
the drifting process, whereas the upper and lower bounds do not. This
fact simplifies a study of the bounding distributions, which are geometric
in some important cases.

Lemma 3 supports bounds on distributions of run lengths for the stan-
dard X2 and T2 charts and their modifications under drifting. What is

needed in each case is to identify the appropriate parameter sequence §




and to show that {F(t;8); § ¢ D} is stochastically decreasing in §.

To fix ideas, first consider the X2 chart with run length N under a
drifting process with parameters {(gl,gl), (gz,gz),...}. It follows that

£ _ .2
P(N>t) = I P(Xj<c ) (5.1)

where L(Xi) = xz(p,si), the noncentral chi-squared distribution with p
degrees of freedom and the noncentrality parameter Gi = n(gi-go)'ggl(gi-go).
The parameter sequence for F(t;§) accordingly is § = (61,52,...), and be-
cause P(Xiﬁpa) is a decreasing function of Gi, it follows that (i) the
family {F(t;8); § ¢ D} is stochastically decreasing in §, and (ii) F(t;
§(m)) = G(t; a(m)) and F(t; §(M)) = G(t; a(M)), where a(m) and a(M) are the
probabilities of exceeding the control limits on those occasions for which
Gi = Gm and Gj = SM’ respectively. Similar developments apply to the stan-
dard TZ chart using the monotonicity of the noncentral T2 distribution in

its noncentrality parameter §,, leading to the following.

i’
THEOREM 3. Let F(t;§) with § ¢ D be the run-length distribution of either

the standard X2 or Tz chart under a drifting process with parameter sequence

-1
- - ) - « 4 = 3
{6, = mlu~ug) "I (yy EO), i=1,2,...}. Then the stochastic bounds
G(t;a(M)) > F(t38) > G(t;a(m))

apply for every £ > 0, where a{m) and a(M) are probabilites of exceeding
the control limits when Gi = Gm = inf(él,dz,...) and Gj = GM = sup(61,52,
...), respectively.

Further conclusions are evident. Because 0 = (0,0,...) ¢ D and is

minimal for D, it follows that the geometric distribution G(t;a) arising




when the process is in control stochastically dominates the run-length

distribution for any drifting Gausslan process. Because the former signals
with unit probability, it follows that the standard X2 and T2 charts even-
tually signal under drifting. The behavior of the standard charts may be
compared under two drifting processes in terms of Si = n(gi-go)'gzl(gi—go).
-1
= i i * = *— *e
When §1 = ¢ for all i, the inequality 61 > Gi n(gi Eo)g (Ei go) asserts

that y, is more distant from o than B; in a non-Euclidean metric. The

o |
stochastic ordering F(t;§) > F(t;8*) assures that the chart tends to signal
more quickly as the process drifts further from control. Even if a process
is stationary in its means, i.e. Ky = u for all i, the charts benefit from
successively tightened dispersion parameters through refinement of the pro-
cess. Specifically, let {gl,gz,...} and {gf,gg,...} be the dispersion

matrices of two processes such that g; - L, is positive semidefinite for all

i

i. It follows that 61 > &%, i.e.

- ' —1 - -— Y -1 1] -
n(u-ug) "2 (=) 2 nlp-p)'TH C(-yg), (5.2)

hence that F(t;§) > F(t;§*) for every t > 0, and thus that the chart for the

former process signals more frequently than the latter at a fixed u # Ho
Corresponding results hold for modified charts as developed in Section

4. If N is the run length of a modified chart we have, in the notation of

Section 4,

P(N>t) = P(T(Y,,¥p)<c ... T(X Y 0)<e )

(5.3)

t
- I
[p LPITQ Y p)se [Yg1dF(Yy)
pxm

for every positive integer t. For modified charts of Type 1 and Type 4 the

family {F(t;8); 8 ¢ D} of run-length distributions is stochastically

i
{
i
i
f




F decreasing in 6, conditionally using properties of X2 and Tz charts as in

developments leading to Theorem 3, and unconditionally because the in-
equality holds point-wise at each fixed XO' For Type 2 and Type 3 modifi-
cations the needed ordering is supplied in the following lemma under the
assumption that the process dispersion parameters are statiomary. Recall

that these procedures otherwise would not be used.

{ LEMMA 4., Suppose the process dispersion parameters are stationmary. Then

] the family {F(t;8); $ ¢ D} of run-length distributions is stochastically
decreasing in § for both the modified T2 charts of Type 2 and Type 3.
A Proof. For Type 3 charts temporarily fix ?O and note that these essentially

are of Type 2 conditionally. For Type 2 charts we have
P(N>t) = P(T(gl,go)jpu,...,T(gt,go)gpa) (5.4)
where T(Yi,go), as defined in Table 1, may be rewritten as
- ) g
= - ' -
T(Y;5Y)) = (¥ ~py) 'L " (Ay-ug)/ wy (5.5)

with

= —— -1_-1 _— '-1..—7
vy = (Y Eofz ¥y Eo)/(gi Kg? 'Sg (¥y-ug) (5.6)

for i = 1,2,...,t. A standard result is that L(wi) = xz(m-p+1) indepen-
dently of ?;. Write w = (wl,wz,...,wt) and let G(w) be their joint cdf.
Now recalling the definition of Xi, writing (5.5) as T(Xi,go) = Xi/wi, and
noting that {T(¥1’¥0)""’T(¥t’¥0)} are conditionally independent given

w, we evaluate (5.4) as

t
2
P(N>t) = IRE (S P(X v e |w)dG(w)
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where Ri is the positive orthant of Rt. Because xi

central chi-squared distribution with noncentrality parameter 61 = n(gi-go)'

conditionally has a non-

g-l(gi-go), the conditional probability P(Xi:&wicaly) decreases as 61 in-
creases, point-wise for each fixed v i=1,2,...,t. For Type 2 charts

the desired property holds unconditionally on taking expectations using
(5.7). For Type 3 charts these conditional results hold point-wise for each

—_—

fixed 30 and thus unconditionally using a standard argument.

The foregoing results now may be combined with Lemma 3 to give the

following.

THEOREM 4. Let F(t;§) with 8 ¢ D be the run-length distribution of a modi-
fied chart under a drifting process with parameters
-1
= - ' - . =
1) {éi n(gi go) §i (Ei BO)’ i=1,2,...} for Type 1 and Type 4
charts, and
-1
= - ' - . =
(11) {Gi n(l_xi Eo) z (Bi EO)’ i 1,2,...} for Type 2 and Type 3

charts. Then the bounds
F(t;8(M) > F(t;8) > F(t38(m))

hold for every positive integer t, where §(m) = (Sm,sm,...) and §(M) =

(GM,OM,...) with Sm = inf(sl,sz,...) and GM = sup(él,éz,...).

It is of interest that F(t;8(m)) and F(t;8(M)) are precisely distribu-
tions of the types considered in Section 4, Theorem 2 accordingly yields

the bounds

F(t;8(m)) < G(tj;a(m)) and F(t;8(M) < G(t;a(M))

where a(m) and a(M) are the probabilities of exceeding the upper control

T




limit on those occasions for which 51 = Sm and Gj = SM, respectively.

It was noted earlier that envelopes for the run~length distributions
of certain drifting processes may be constructed using geometric distribu-
tions. To illustrate, envelopes are given in Figure 1 for the standard x2
and T2 charts, each monitoring at level a = 0.05 with p = 2 and n = 6. The
case § = 0 applies when the monitored process is in control. For each type
of chart the curves labeled § = 3.0 and § = 6.75 represent stationary pro-
cesses having the parameter sequences §1 = (3.0,3.0,...) and §2 = (6.75,

6.75,...), respectively. These curves comprise an envelope containing the

distributions of run lengths for all drifting processes satisfying

3.0 <6 <38,
= 2

< §
1=

u < 6.75

using X2 or TZ charts as appropriate. Entries in Figure 1 were found on
converting XZ and T2 into F-statistics and using P.C. Tang's tables as
given in Graybill (196l) to determine the probability B of surpassing the
a~level control limit on any particular occasion. Values of G(t;8) then
were computed directly for various values of t and were graphed.

It is informative to compare curves for the X2 and 'I'2 charts at a
fixed y # Ky Then the run length of the X2 chart is stochastically small-
er than that of the T2 chart. This property may be observed in Figure 1
for the cases treated there, and it can be shown analytically for any
choice of p, n, and y # o The greater efficiency of using X2 when appro-
priate on auy monitoring occasion thus translates into a greater propensity
to signal that u # iy in comparison with the 1? chart.

The optimality of the standard T2 chart among procedures in T, and t

1 2

was established in Section 3 for stationary processes not in control. This

il_
!
i
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optimality carries over to drifting processes as well.

THEOREM 5. Consider a p-dimensional Gaussian process with drifting para-

meters {(ul,zl), (Ez,gz),...} on successive sampling occasions, to be
monitored for means. Of all invariant procedures monitoring at level a in

the class Ty and of all a-level monitoring procedures in the class T the

2’
rur. length of the TZ chart is stochastically smallest.

Proof. Let {T(Yl), T(Yz),...} be the statistics and Cy the control limit

of any procedure in T, OF Ty, and let N be its run length. Because

t
POE) = T R(T(Y)sc ),

it is clear that (i) the run-length distribution F(t;6) of the chart de-

pends on the parameters 3 = (8 ..») with {Bi = P(T(gi)>ca); i=1,2,

1182,'
«++}, and the family {F(t;@); B e 0} decreases stochastically in 8. Let

8 be the sequence of parameters for any procedure in T, or T, and let g*

be the corresponding sequence for the T2 chart. Because on each sampling

occasion T2 is optimal among procedures in ™ and Tyo

B < 8*. The conclusion of the theorem now follows from the stochastically

it follows that

decreasing character of {F(t;8); 8 ¢ D}.

6. Monitoring Spherical Processes. Many findings of the foregoing
sections carry over to observations generated from a spherical process
{U(t); t < N} as in Section 2. Consider the standard X2 and T2 charts

using outcomes {gi (£)} of the vector-valued process defined in (2.3)

3

having the location parameters u(t) and the dispersion parameters L (t).

For convenience we drop the arguments and index these parameters as (yi,

§i) for the ith monitoring period. The principal properties of these
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charts under stationary and drifting processes induced from a spherical

process are the following.

THEOREM 6. Let ca(x) and ca(T) be a-level control limits for the X2 and
T2 charts for use with observations generated from a spherical process.

Let Nx and NT be the run lengths of these charts having the distributions

-1
. . = - ! - e i =
Fx(t,§) and FT(t,g) with parameters {61 n(gi go) §i (Ei Eo), i=1,2,...}.
Then
(1) ¢ (1) = T2(p,n-1);
a a

(11) P(NTfF) = G(t;a) when u(t) = u, for all t;

]
(iii) P(NX>t) > 1 - G(t;8) when the process is stationary, where

3 = P(X2>ca(x)); and
(iv) the families {Fx(t;§); § ¢ D} and {FT(t;§); § € D} are stochasti-~

cally decreasing in § = (61,6 Y.

g1

Proof. (i) Starting with ¥1 = [Yil’¥12""’¥in]’ make the location-scale

!

changes %i = [gil,giz,...,gin] with %ij = £y (gij—go) and note that
2 = a¥, -4 'S (T, u ) = nZ'W 12 (6.1)
i ~1 =07 =1 *~i <0 ~i~i <1

where Z, and W, respectively are the sample mean vector and the sample dis-

i
persion matrix computed from gi.
— _.1—
= ' -
Thus choosing M as {0} < prn and noting that ¢(gi) ngigi 31 is homogen
2

ous of degree zero in its argument, we apply Lemma 2 with ¢(§i) = Ti to

infer that L(Ti) = Tz(p,n—l) for any underlying spherical process when

Moreover, L(gi) is spherical on prn'

u(t) = o for all t. The conclusion ca(T) = Ti(p,n-l) follows immediately.

(11) For each fixed t write

2 2 )
P(Np>€) = P(T<c (T),...,Ti<e (T); (6.2)
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define Z = [gl,gz,...,gt] £ (prn)t in terms of the standardized variables

introduced in the proof of (i); and note that L(Z) is spherical on (pr )t.

n
)t; observe that ¢(2) = (dz‘w‘l"

Accordingly take M as {0} = (F 19 Zpseees

pxn
gt) is homogeneous of degree zero in its argument; and apply Lemma 2

2
1’

tical to its normal-theory form when g(t) = Mo Conclusion (ii) now follows

once more with ¢(2) = (T ..,Ti) to conclude that L(T%,...,Ti) is iden~-
directly from (6.1) and (6.2) and results known for the Gaussian case.
(iii) From the representation (2.1) for the underlying spherical pro-

cess, P(N‘>t) may be written as

P(X%<c (X),...,X2<c (X))
- t—"a

[}

P(Nx>t)
(6.3)

t
f’g iEIP(Xiica(X)]r)dH(r)

because {X%,...,Xi} are conditionally independent given r. Under the hypo-

thesis of stationarity (6.3) becomes
) 2 t
P(Nx>c) [O[P(x ica(x)lr)] dH(r) (6.4)

where X2 has the typical distribution of {X%,.. ,Xi}. Conclusion (iii) now
follows from the arguments leading to Lemma 1.

(iv) Consider {Fx(t;g); § ¢ D}, From (6.3) it is clear that the con-
ditional distribution L(r-zxilr) is Xz(p,si(r)) with the noncentrality

parameter
6.(r) = alu,~u) "5t (u,-un) /e (6.5)
i %1780’ 21 HiT%p . .

That the conditional run-length distributions {Fx(t;§]r); 5 € D} are sto-
chastically decreasing in § follows as in the proof of Theorem 3 point-wise

for each fixed r. The property holds unconditionally on applying a
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standard argument. The case of {FT(t;d); § ¢ D} is treated similarly.

Conclusion (i) assures that the standard Tz chart with the normal-
theory control limit ca is appropriate for monitoring any spherical pro-
cess after location and scale changes, at level a. However, the value ca(X)
required for monitoring at level a using the X2 chart generally depends on
the underlying spherical process. Conclusion (ii) of Theorem 6 establishes
the familiar normal-theory run-~length distribution of the T2 chart for any
spherical process when the process is in control.

Results for modified charts given in Sections 4 and 5 under Gaussian
assumptions carry over to spherical processes. Proofs for these extensions

follow the pattern of proof for conclusions (iii) and (iv) of Theorem 6.

In view of the representation (2.1), conditional properties already have
been established in the earlier sectioms point-wise for each r; uncondition-
al properties then yield to a standard argument. Further details are omit-
ted in the interest of brevity.

OQur final results deal with the relative performance of a given chart
under alternative spherical processes. By a given chart is meant either

2

the X~ or TZ chart with a fixed value for its control limit. Let u(+) and

v(+) be finite-dimensional measures characterizing two zero-mean stochastic

processes. If for every N, u(*) is more peaked about 0 ¢ RN than v(*) in
the sense of Sherman (1955), then the u-process is said to be more peaked
about the zero function than the v-process. In the case of spherical pro-
cesses having the representation (2.1), it can be showm that of two such
processes having the mixing distributions Hu(r) and Hv(r), the u-process
is more peaked about zero than the v-process if and only if Hu(r) > Hv(r)

for each r > 0. Our principal result is the following.
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THEOREM 7. Let Fu(t;S) and Fv(t;a) be the run-length distributions of a

chart under drifting processes having the same parameters
(8, = a0 T u,mu); 1= 1,2,...}
i i 207 =1 *~i 207 T

and generated from spherical processes having the measures u(+) and v(-),
respectively. If the u-process is more peaked about zero than the v-process,
then
(1) F,<t;9) > Fu(t;Q) for the X2 chart when the processes are in con-
trol; and 1
(i) Fu(t;§) > Fv(t;§> for the T2 chart.

Proof. (i) Let ¢(X) be the control limit for the Xz chart, and let

2 == 1
= { o v 3
A {giEprn X{=nZ.Z <c(X)} (6.6)
in the notation used in the proof of Theorem 6. On letting A = A1NA20...nAt,
we infer from the first expression on the right of (6.3) that
[P(“u>t)‘P(Nv>t)] = [u(a)-v(a)]. (6.7)
But A is a convex subset of (prn)t symmetric about 0 under reflectionm,
Under the hypothesis that u(¢) is more peaked about Q than v(-), it follows
that [u(A)-v(A)] > 0, which isequivalent to conclusion (i).
(ii) Consider the standard T2 chart with control limit Cyr Let N be j

a typical run length and let Nu and Nv be the run lengths of the chart

under the two processes. For any underlying spherical process note as in

(6.3) that

2<c )

2
P(N>t) = P(Tlica" ces T e,

- 2 (6.8)
= [y {8 B(T<e |r)dH(r)




where {Tf,Tg,...,Ti} are conditionally independent given r, and the con=~

ditional distribution L(Tilr) is a noncentral Hotelling's (1931) distri-
bution depending on r only through the noncentrality parameter Si(r) given
by (6.5). Define
S S
6(e;8(x)) = I P(Ti<c |r) (6.9)
with §(r) = (61,62,...,6t)/r2. Applying the relation (6.8) twice and using

(6.9), we evaluate the difference D(t) = [P(Nv>t)~P(Nu>t)] as
D(t) = [oG(t;8(x))dH (r) - f;G(t;G(g)dHu(r). (6.10)

Under the hypothesis that Hv(-) dominates Hu(-) stochastically, there are
increasing functions £(v) and n(v) with g£(v) < n(v) and a random variable
V with distribution H(+) such that L(£(V)) = Hu(-) and L(n(V)) = Hv(-);

cf. Lehmann (1959), page 73, It follows that
D(t) = [GI6(E58(n(v))) = G(£38(E(¥)))1dH(V). (6.11)

But G(t;§(r)) is an increasing function of r; because n(v) > £(v) for each
v, it follows that the integrand on the right of (6.11) is point-wise non-
negative and thus the integral is nonnegative. This gives P(Nv>t) > P(Nu>t),

which is equivalent to conclusion (ii) of the theorem.

It was noted earlier that the control limit ca(X) for monitoring at
level o using the X2 chart generally depends on the underlying spherical
process. Suppose the control limit cg(x) is chosen for some reference dis-
tribution such as the Gaussian distribution. Provided the processes are

in control, the run-length for the reference distribution as a bound




stochastically dominates the run lengths for all spherical processes less

T

peaked than the reference, and is dominated stochastically by the run lengths

for all spherical processes more peaked than the reference distribution.

1 These results are consequences of conclusion (i) of Theorem 7. Conclusion
L (i1) of that theorem assures that the T2 chart will tend to signal more
. frequently under drifting, the more peaked the measure of the underlying

process.
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TABLE 1. Statistics and their control limits in modified X2 and '1'2 charts
for monitoring the means of a multidimensional production process.

Modification Statistic Control
Type Limit
1 (om/ (o) 1 (T, T "1™ (T, T X ()
2 0T mug) 'S5 F,ug) 12 (p,m-1)
3 (om/ (b)) (T, -7 "85 - (T, T 12(p,m-1)
4 [om/ (o) ) (T, T '5; (T, T 12(p,n-1)
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FIGURE 1. Geometric distributions of run lenghts fcr the X2 and T~ charts

monitoring at level a = 0.05 for the cases p=2

, n=6, with 6=3.0 and 8=6.75.
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